Objective: We investigated the mechanism of Dexmedetomidine (Dex) in infant rats with brain injury.
Methods: The infant rats underwent brain injury modelling. The motor function, spatial learning and memory abilities in rats, and the hippocampal CA1 region Nissl body level and apoptosis were evaluated by behavioural tests and histological stainings. Levels of the hippocampal CA1 region p-IRE1α, nuclear/cytoplasmic p65, CHOP, Bax and Bcl-2 proteins were determined by Western blot.
Results: Propofol anaesthesia caused brain injury in infant rats. Dex increased the hippocampal CA1 region Nissl body level, abated cell apoptosis, reduced p-IRE1α, ATF6, p-PERK/PERK and CHOP levels, decreased the Bax protein level, elevated the Bcl-2 protein level, and alleviated brain injury in infant rats. After ERS induction and the NF-κB pathway inhibition, the hippocampal CA1 region nuclear/cytoplasmic p65 ratio, CHOP level, and apoptosis were reduced in infant rats with brain injury treated with Dex, while the learning and memory abilities of rats were enhanced.
Conclusion: Dex reduced the hippocampal CA1 region cell apoptosis and enhanced learning and memory abilities by inhibiting the ERS-mediated IRE1α/NF-κB/CHOP pathway, thereby alleviating brain injury in infant rats.
Keywords: Dexmedetomidine; apoptosis; brain injury; endoplasmic reticulum stress; hippocampal CA1 region.