Prenatal sonographic diagnosis of congenital heart disease (CHD) can lead to improved morbidity and mortality. However, the diagnostic accuracy of ultrasound, the sole prenatal screening tool, remains limited. Failed prenatal or early newborn detection of cyanotic CHD (CCHD) can have disastrous consequences. We therefore sought to use a Precision Fetal Cardiology based approach combining metabolomic profiling of maternal saliva and machine learning, a major branch of artificial intelligence (AI), for the prenatal detection of isolated, non-syndromic cyanotic CHD. Metabolomic analyses using Ultra-High Performance Liquid Chromatography/Mass Spectrometry identified 468 metabolites in the saliva. Six different AI platforms were utilized for the detection of CCHD and CHD overall. AI achieved excellent accuracy for the CCHD detection: Area Under the ROC curve: AUC (95% CI) = 0.819 (0.635-1.00) with a sensitivity and specificity of 92.5% and 87.0%, and for CHD overall: AUC (95% CI) = 0.828 (0.635-1.00) with a sensitivity of 90.5% and specificity of 88.0%. Similarly high accuracies were achieved for the detection of CHD overall: AUC (95% CI) = 0.8488 (0.635-1.00) with a sensitivity of 92.5% and specificity of 91.0%. Pathway analysis showed significant alterations in Arachidonic Acid, Alpha-linoleic acid, and Tryptophan metabolism indicating significant lipid dysfunction in cyanotic CHD. In summary, we report for the first time, the accurate detection of non-syndromic cyanotic CHD using maternal salivary metabolomics. Further, analysis revealed significant alteration of lipid metabolism.
© 2025. The Author(s).