In human adults, visual perception varies throughout the visual field. Performance decreases with eccentricity1,2 and varies around polar angle. At isoeccentric locations, performance is typically higher along the horizontal than vertical meridian (horizontal-vertical asymmetry [HVA]) and along the lower than the upper vertical meridian (vertical meridian asymmetry [VMA]).3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23 It is unknown whether the macaque visual system, the leading animal model for understanding human vision,24,25 also exhibits these performance asymmetries. Here, we investigated whether and how visual field asymmetries differ between these two groups. Human adults and adult macaque monkeys (Macaca nemestrina) performed a two-alternative forced choice (2AFC) motion direction discrimination task for a target presented among distractors at isoeccentric locations. Both groups showed heterogeneous visual sensitivity around the visual field, but there were striking differences between them. Human observers showed a large VMA-their sensitivity was poorest at the upper vertical meridian-a weak horizontal-vertical asymmetry, and lower sensitivity at intercardinal locations. Macaque performance revealed an inverted VMA-their sensitivity was poorest in the lower vertical meridian. The opposite pattern of VMA in macaques and humans revealed in this study may reflect adaptive behavior by increasing discriminability at locations with greater relevance for visuomotor integration. This study reveals that performance also varies as a function of polar angle for monkeys, but in a different manner than in humans, and highlights the need to investigate species-specific similarities and differences in brain and behavior to constrain models of vision and brain function.
Keywords: human and non-human primates; polar angle asymmetries; visual field; visual perception.
Copyright © 2024 Elsevier Inc. All rights reserved.