The development of carbon monoxide oxidation catalysts for complex gas environments faces significant challenges in fire scenarios. Only a few representative gases are used as interfering components in simulated real smoke under laboratory conditions, which cannot accurately reflect the performance of catalysts in a real fire. Herein, Au/CeO2 catalysts with high activity were prepared by adjusting the morphology (rod, cube, polyhedron and irregular particles) and exposed crystal surface ratio of CeO2. Rod-like Au/CeO2 (Au/CeO2-NR) achieved 99 % CO conversion at 25 °C and demonstrated excellent water resistance. This excellent activity originates from the high oxygen vacancy concentration of the CeO2-NR and the interaction between Au species and the carrier. A testbed was established by connecting a steady-state tube furnace with a catalytic fixed-bed reactor to evaluate the CO elimination performance of the catalyst under realistic combustion conditions. Despite competitive adsorption of small molecules (H2O, acetone, etc.) on the active sites, Au/CeO2-NR eliminates carbon monoxide in real combustion atmospheres at only 60 °C. This study provides a method for evaluating the catalytic activity of CO in realistic environments, which is promising for practical use in application scenarios dealing with toxic fumes.
Keywords: Au/CeO(2); CO elimination; Morphology effect; Real-world combustion conditions.
Copyright © 2025 Elsevier B.V. All rights reserved.