Weeds are a concern in agriculture and the use of herbicides constitutes an effective, efficient, and economical way to control their growth. Recent discoveries of herbicides are promising for the management of resistant weeds. However, there is a gap in the knowledge of the toxic effects of some herbicides previously reported on immune cells. The present study aimed to examine cellular immunotoxicity of three herbicides (clomazone, glyphosate, and sulfentrazone) after 96 hr incubation utilizing RAW 264.7 BALB/c mouse monocyte/macrophage-like cell line to elucidate the role of some toxicological pathways. Data demonstrated the herbicides clomazone, glyphosate, and sulfentrazone initiated a cytotoxic effect as evidenced by EC50 values of 429.2; 53.7; 866.6 mg/L, respectively. Clomazone and sulfentrazone, at all concentrations, induced excess production of reactive oxygen (ROS) and reactive nitrogen (RNS) free radicals. An immunosuppression was observed in RAW 264.7 cells after incubation with 50 or 100 mg/L glyphosate and 500 or 1000 mg/L sulfentrazone. In addition, all herbicides produced mitochondrial depolarization and decreased tumor necrosis factor-α (TNF-α) levels. This constitutes the first report of the effects of clomazone and sulfentrazone on RAW 264.7 cells, including reduced TNF-α levels, indicating the adverse influence of herbicides on the immune system.
Keywords: Herbicides; RAW 264.7; TNF; clomazone; glyphosate; immunomodulatory activity; mitochondria; oxidative stress; sulfentrazone.