Itaconate is a metabolite catalyzed by cis-aconitate decarboxylase (ACOD1), which is mainly produced by activated macrophages and secreted into the extracellular environment to exert complex bioactivity. In the tumor microenvironment, itaconate is concentrated and induces an immunosuppressive response. However, whether itaconate can be taken up by tumor cells and its mechanism of action remain largely unclear. Here, we identified solute carrier family 13 member 3 (SLC13A3) as a key protein transporting extracellular itaconate into cells, where it elevates programmed cell death ligand 1 (PD-L1) protein levels and decreases the expression of immunostimulatory molecules, thereby promoting tumor immune evasion. Mechanistically, itaconate alkylates the cysteine 272 residue on PD-L1, antagonizing PD-L1 ubiquitination and degradation. Consequently, SLC13A3 inhibition enhances the efficacy of anti-CTLA-4 (cytotoxic T lymphocyte-associated antigen-4) immunotherapy and improves the overall survival rate in syngeneic mouse tumor models. Collectively, our findings identified SLC13A3 as a key transporter of itaconate and revealed its immunomodulatory role, providing combinatorial strategies to overcome immunotherapy resistance in tumors.
Keywords: IRG1; PD-L1; SLC13A3; immunotherapy; itaconate.
Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.