Nucleosome dynamics render heterochromatin accessible in living human cells

bioRxiv [Preprint]. 2024 Dec 13:2024.12.10.627825. doi: 10.1101/2024.12.10.627825.

Abstract

The eukaryotic genome is packaged into chromatin, which is composed of a nucleosomal filament that coils up to form more compact structures. Chromatin exists in two main forms: euchromatin, which is relatively decondensed and enriched in transcriptionally active genes, and heterochromatin, which is condensed and transcriptionally repressed 1-10 . It is widely accepted that chromatin architecture modulates DNA accessibility, restricting the access of sequence-specific, gene-regulatory, transcription factors to the genome. Here, we measure genome accessibility at all GATC sites in living human MCF7 and MCF10A cells, using an adenovirus vector to express the sequence-specific dam DNA adenine methyltransferase. We find that the human genome is globally accessible in living cells, unlike in isolated nuclei. Active promoters are methylated somewhat faster than gene bodies and inactive promoters. Remarkably, both constitutive and facultative heterochromatic sites are methylated only marginally more slowly than euchromatic sites. In contrast, sites in centromeric chromatin are methylated slowly and are partly inaccessible. We conclude that all nucleosomes in euchromatin and heterochromatin are highly dynamic in living cells, whereas nucleosomes in centromeric α-satellite chromatin are static. A dynamic architecture implies that simple occlusion of transcription factor binding sites by chromatin is unlikely to be critical for gene regulation.

Publication types

  • Preprint