Mitochondrial cristae, formed by folding the mitochondrial inner membrane (IM), are essential for cellular energy supply. However, the observation of the IM is challenging due to the limitations in spatiotemporal resolution offered by conventional microscopy and the absence of suitable in vitro probes specifically targeting the IM. Here, we describe a detailed imaging protocol for the mitochondrial inner membrane using the Si-rhodamine dye HBmito Crimson, which has excellent photophysical properties, to label live cells for imaging via stimulated emission depletion (STED) microscopy. This allows for STED imaging over more than 500 frames (approximately one hour), with a spatial resolution of 40 nm, enabling the observation of cristae dynamics during various mitochondrial processes. The protocol includes detailed steps for cell staining, image acquisition, image processing, and resolution analysis. Utilizing the superior resolution of STED microscopy, the structure and complex dynamic changes of cristae can be visualized. Key features • The protocol is designed to visualize mitochondrial cristae in living cells using STED microscopy. • The protocol enables nanoscale observation of dynamic mitochondrial cristae. • Real-time observation of mitochondrial morphological changes, fusion, and fission events.
Keywords: Fluorescence labeling; Live cell imaging; Low-saturation power; Mitochondria cristae; Super-resolution imaging.
©Copyright : © 2025 The Authors; This is an open access article under the CC BY-NC license.