Evaluating the impact of a hand-crafted 3D-Printed head Model and virtual reality in skull base surgery training

Brain Spine. 2024 Dec 12:5:104163. doi: 10.1016/j.bas.2024.104163. eCollection 2025.

Abstract

Introduction: While cadaveric dissections remain the cornerstone of education in skull base surgery, they are associated with high costs, difficulty acquiring specimens, and a lack of pathology in anatomical samples. This study evaluated the impact of a hand-crafted three-dimensional (3D)-printed head model and virtual reality (VR) in enhancing skull base surgery training.

Research question: How effective are 3D-printed models and VR in enhancing training in skull base surgery?

Materials and methods: A two-day skull base training course was conducted with 12 neurosurgical trainees and 11 faculty members. The course used a 3D-printed head model, VR simulations, and cadaveric dissections. The 3D model included four tumors and was manually assembled to replicate tumor-modified neuroanatomy. Trainees performed surgical approaches, with pre- and post-course self-assessments to evaluate their knowledge and skills. Faculty provided feedback on the model's educational value and accuracy. All items were rated on a 5-point scale.

Results: Trainees showed significant improvement in understanding spatial relationships and surgical steps, with scores increasing from 3.40 ± 0.70 to 4.50 ± 0.53 for both items. Faculty rated the educational value of the model with a score of 4.33 ± 0.82, and a score of 5.00 ± 0.00 for recommending the 3D-printed model to other residents. However, realism in soft tissue simulations received lower ratings.

Discussion and conclusion: Virtual reality and 3D-printed models enhance anatomical understanding and surgical training in skull base surgery. These tools offer a cost-effective, realistic, and accessible alternative to cadaveric training, though further refinement in soft tissue realism is needed.

Keywords: 3D-printed model; Neurosurgical education; Skull base surgery; Virtual reality.