Background: Secreted frizzled-related protein 1 (SFRP1) inhibits Wnt signaling and is differentially expressed in human hair dermal papilla cells (DPCs). However, the specific effect of SFRP1 on cell function remains unclear. Telomerase reverse transcriptase (TERT) representing telomerase activity was found highly active around the hair dermal papilla. TERT levels can be enhanced by activation of the Wnt pathway in cancer cells and embryonic stem cells. Whether this regulatory mechanism is still present in DPCs has not been studied so far.
Methods: In this study, DNA plasmids and siRNAs were constructed against the SFRP1 gene and transfected into DPCs cultured in vitro. We detected the viability, proliferation, and migration of DPCs by Calcein/PI fluorescence, CCK-8, trans-well, or cell scratch experiments, and the expression of potential target genes was also determined through quantitative detection of RNA and protein.
Results: The results demonstrate a significant difference in SFRP1 levels from the control group, suggesting successful transfection of the DNA plasmid and siRNA of SFRP1 into IDPCs. Also, SFRP1 regulates the cell proliferation capacity of IDPCs and reduces their migration functions. The DPCs' living activity, proliferation, and migration function exhibited a negative correlation with the level of SFRP1. SFPR1 also inhibits the protein or RNA expression of β-catenin and TERT in DPCs.
Conclusion: It was proven that in human DPCs, different levels of SFRP1 change how cells work and control Wnt/β-catenin signaling or telomerase activity. This means that blocking SFRP1 could become a new way to treat hair loss diseases in the future.
Keywords: Dermal papilla cell; Hair growth; Secreted frizzled-related protein 1 (SFRP1); Telomerase; Telomerase reverse transcriptase (TERT); Wnt/β-catenin.
© 2024 The Author(s).