The semi-hydrogenation of alkynes into alkenes rather than alkanes is of great importance in the chemical industry, and palladium-based metallic catalysts are currently employed. Unfortunately, a fairly high cost and uncontrollable over-hydrogenation impeded the application of Pd-based catalysts on a large scale. Herein, a sandwich structure single atom Pd catalyst, Z@Pd@Z, was prepared via impregnation exchange and epitaxial growth methods (Z stands for ZIF-8), in which Pd single atoms were stabilized by pyrrolic N in a zeolitic imidazolate framework (ZIF-8). Semi-hydrogenation of acetylene was performed and Z@Pd@Z achieved 100% acetylene conversion at 120 °C with an ethylene selectivity of more than 98.3% at an extra low Pd concentration. Z@Pd@Z exhibited a specific activity of 1872.69 mLC2H4 mgPd-1 h-1, surpassing most of the reported Pd-based catalysts. The existence of Pd single atoms coordinated by nitrogen (Pd-N4) was verified by XAS (synchrotron X-ray absorption spectroscopy), which provided active sites for H2 dissociation and the dissociated hydrogen quickly spilled over the surface of the outer ZIF layer to hydrogenate alkyne to ethene; besides, the catalytic activity could be controlled by adjusting the thickness of the outer ZIF layer. The confinement of the ZIF on Pd single-atom sites and the high energy barrier of ethylene hydrogenation were found to be responsible for the superior C2H2 semi-hydrogenation activity. This work opens up valuable insights into the design of ZIF-derived single-atom catalysts for efficient acetylene selective hydrogenation.