Triclocarban (TCC) and triclosan (TCS) are applied in a wide range of pharmaceutical and personal care products to prevent or reduce bacterial growth. Due to their extensive application, they are frequently detected in marine environments. In this study, marine sediment systems exposed to different concentrations of TCC and TCS were established to evaluate their effects on microbial communities. It was found that TCC and TCS increased catalase and protease activities on Day 1, but inhibited after 15 days. Microbial activity, as indicated by increased dehydrogenase activity and polysaccharide production, should be enhanced after a 15-day adaptation period. High-throughput sequencing revealed resilient α-diversity but significant shifts in community structures were observed, particularly on Day 15. Function prediction analysis confirmed that most functional profiles remained stable, and network analysis indicated that TCC and TCS enhanced the complexity of the microbial community. This study provides new insights into the impacts and risks of TCC and TCS on the marine environment.
Keywords: Marine sediment; Microbial community; Triclocarban; Triclosan.
Copyright © 2025 Elsevier Ltd. All rights reserved.