Hydrogels possessing appropriate adhesion and antibacterial properties have emerged as promising dressings for expediting wound healing, while also providing the convenience of visualizing the wound site to accurately monitor the healing process. In this study, we incorporated oxidized and degraded polydopamine nanoparticles into quaternized chitosan/oxidized dextran hydrogel QOP series, resulting in enhanced transmittance exceeding 95 % and adhesion strengths reaching up to 19.4 kPa. Moreover, these hydrogels exhibit a well-defined porous structure, rapid gelling ability (<50 s), exceptional self-healing capacity, and a swelling rate surpassing 760 %. Furthermore, the QOP hydrogels demonstrate outstanding hemocompatibility (hemolysis rate < 3 %) and cytocompatibility (cell viability >100 %). In addition, they display potent inhibition against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), Staphylococcus pasteuri and Escherichia coli, with bactericidal rates exceeded 90 %. The closure of MRSA-infected wounds along with H&E and Masson staining analysis revealed that QOP hydrogels can expedite wound healing by stimulating collagen deposition and facilitating angiogenesis.
Keywords: Adhesion; Antibacterial; Polydopamine nanoparticles; Polysaccharides; QOP hydrogels; Wound healing.
Copyright © 2025 Elsevier B.V. All rights reserved.