Effects of SCT genetic polymorphisms on methotrexate concentrations and toxicities in Chinese children with acute lymphoblastic leukemia

Leuk Lymphoma. 2025 Jan 11:1-11. doi: 10.1080/10428194.2025.2451059. Online ahead of print.

Abstract

Solute carrier (SLC) transporters play a crucial role in facilitating the cellular uptake of various anticancer drugs, such as methotrexate (MTX). This study aimed to analyze the impact of nonsynonymous single nucleotide polymorphisms (SNPs) in SLC19A1, SLCO1B1, and SLCO1B3 on MTX exposure, toxicities, and prognosis in 148 patients with acute lymphoblastic leukemia (ALL). The SLCO1B3 rs7311358 polymorphism was significantly associated with the median dose-normalized MTX concentrations at 24 h (p < .05). There were significant differences in the proportions of patients with serum MTX levels >40 µmol/L at 24 h among SLC19A1 rs1051266 GG, GA, and AA genotype carriers (29.0, 24.7, and 6.2%, respectively, p < .05). The SLC19A1 rs1051266 G > A polymorphism also displayed significant associations with hematological (p < .05) and hepatic toxicities (p < .01). Our findings indicate that the analysis of SNPs in solute carrier transporters (SCTs) could offer valuable insights into the interpatient variability of MTX pharmacokinetics and toxicities in ALL children.

Keywords: SLC19A1; SLCO1B1; SLCO1B3; Single nucleotide polymorphism; methotrexate.