High-Pressure Treatment in Combination with Reduced Sodium for Improving the Physicochemical Properties and Sensory Qualities of Pork Gels

Foods. 2025 Jan 2;14(1):96. doi: 10.3390/foods14010096.

Abstract

High-pressure treatment was utilized in this study to produce high-quality, reduced-sodium pork gels with desirable texture and sensory properties, addressing the challenge of maintaining quality in low-sodium meat products to meet health-conscious consumer demands. High-pressure treatment applied within the range of 150-200 MPa significantly reduced cooking loss while maintaining moisture content and provided an ideal network structure for reduced-sodium pork gels. High-pressure treatment at up to 100-200 MPa, in combination with added sodium chloride and sodium polyphosphate, was evaluated for its effects on gel texture, with results indicating that high-pressure treatment significantly improved breaking stress (increased by 10.01% under 150 MPa and 14.66% under 200 MPa), modulus of elasticity (increased by 14.77% under 150 MPa and 24.17% under 200 MPa), and hardness (increased by 11.12% under 150 MPa and 11.45% under 200 MPa). Rheological characteristic measurements revealed that gel strength was highest at 150 MPa (G' = 443,000 Pa; G″ = 66,300 Pa and tanδ = 0.15), which showed higher G' and G″ values and similar tanδ compared to the 0.1 MPa, 2% NaCl + 0.5% SPP condition (G' = 334,000 Pa; G″ = 49,200 Pa; tanδ = 0.148). Protein analysis by sodium dodecyl sulfate-polyacrylamide gel electrophoresis showed a reduction in the α-actinin band with increased pressure, which suggested protein interactions were enhanced. Differential scanning calorimetry analysis indicated that protein denaturation occurred more readily at higher pressures (0.071 J/g at 0.1 MPa, 0.057 J/g at 150 MPa, and 0.039 J/g at 200 MPa). These findings underscore the value of treatment under high pressure at 150 MPa developing reduced-sodium meat products with desirable texture and flavor characteristics.

Keywords: high hydrostatic pressure; low-sodium meat product; physicochemical property; sensory evaluation.

Grants and funding