The gut microbiome plays an important role in the carcinogenesis of luminal gastrointestinal malignancies and response to antineoplastic therapy. Preclinical studies have suggested a role of intratumoral gammaproteobacteria in mediating response to gemcitabine-based chemotherapy in pancreatic ductal adenocarcinoma (PDAC). To our knowledge, this is the first study to evaluate the impact of the PDAC microbiome on chemotherapy response using samples from human pancreatic tumor resections. We performed 16S rRNA gene amplification and sequencing on both formalin-fixed paraffin-embedded (FFPE) and fresh frozen human PDAC resection samples. We analyzed frozen samples from 26 patients with resected PDAC and examined tumor and tumor-adjacent normal tissue. These patients represented nine long-term survivors (LTS) and nine short-term survivors (STS) after neoadjuvant gemcitabine therapy and eight control patients who did not receive any neoadjuvant therapy prior to resection. We also included FFPE samples from five patients, including tumor samples (3 samples per patient), tumor-adjacent normal tissue (2 per patient) and tumor-adjacent paraffin (1 per patient). Within frozen tissue, total DNA yields were high, but bacterial DNA was generally low, comparable to those seen in negative controls. In FFPE tissue, DNA yields were low and bacterial abundances were comparable in paraffin, tumor and normal PDAC samples. Gammaproteobacteria concentrations did not correlate with outcomes in patients treated with neoadjuvant gemcitabine-based chemotherapy. Our study found low microbial biomass in pancreatic tumor tissue, with no detectable association between bacterial taxa and chemotherapy outcomes. These results suggest a limited role of the microbiome in gemcitabine-based chemotherapy response in PDAC. Preclinical studies have implicated the pancreatic tumor microbiome in driving response to therapy. Cytidine deaminase, an enzyme produced by gammaproteobacteria, can metabolize gemcitabine and has been hypothesized to inhibit pancreatic tumor response to chemotherapy. Several clinical trials have evaluated the role of the tumor microbiome in pancreatic cancer treatment. We evaluated the impact of the pancreatic tumor microbiome on chemotherapy response using samples from human pancreatic tumor resections. We found a low microbial load that is partially attributable to contaminants and that gammaproteobacteria levels did not correlate with outcomes in patients with pancreatic cancer treated with gemcitabine-based chemotherapy.
Keywords: chemotherapy; gemcitabine; microbiome; pancreatic cancer.