To achieve the assembled connection between dovetail profiled steel sheets and the boundary members in dovetail profiled steel concrete composite shear walls (DPSCWs), self-tapping screws were employed. Three DPSCW specimens connected with self-tapping screws were tested under combined axial and cyclic lateral loads to evaluate their hysteretic response, focusing on the influence of the number of self-tapping screws and the axial compression ratio. The self-tapping screw-connected DPSCWs exhibited a mixed failure mode, characterized by shear failure of the profiled steel sheets and compression-bending failure of multiple wall limbs divided by ribs on the web concrete. Except for slight deformation at the screw holes located on the profiled sheets at the corners of the wall, the connections exhibited minimal visible damage. The yield drift ratio of the DPSCW specimens in the test ranged from 1/286 to 1/225, and the ultimate drift ratio ranged from 1/63 to 1/94, both meeting the relevant deformation standards specified in the "Code for Seismic Design of Buildings. Increasing the number of self-tapping screws enhanced the development of local tensile fields on the profiled steel sheets, thereby improving the wall's load-carrying, deformation, and energy dissipation capacities. However, increasing the axial compression ratio improved the initial stiffness of DPSCWs but reduced their load bearing and deformation capacity. Moreover, a design method for the self-tapping screw connections in DPSCWs was proposed.
Keywords: composite shear wall; design method; dovetail profiled steel sheet; seismic performance; self-tapping screw connection.