Construction of GOx-loaded metal organic frameworks antibacterial composite hydrogels for skin wound healing

Int J Biol Macromol. 2025 Jan 8:295:139655. doi: 10.1016/j.ijbiomac.2025.139655. Online ahead of print.

Abstract

Bacterial infections and inflammation severely impede wound healing. Here, we developed a zwitterionic hydrogel incorporating MOF/GOx for pH-responsive, controlled drug release. The multifunctional hydrogel embedded with MOF/GOx was successfully prepared through the Schiff base reaction between the copolymer poly[(2-methacryloyloxyethyl phosphorylcholine)-co-(4-formylphenyl methacrylate)] (PMF) and the branched polyethylenimine (PEI) modified by the zwitterionic monomer ((4-hydroxyphenyl)sulfonyl)(4-(trimethylammonio)butanoyl)amide (AB), which possessed excellent injectable and self-healing ability, a highly sensitive and reversible responsiveness to pH changes, and good biocompatibility. Moreover, the MOF/GOx-PP composite hydrogel under exposure to a slightly acidic environment would rupture, and the slowly released MOF/GOx triggered a cascade-catalyzed reaction that could inhibit and kill Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus), and, simultaneously, mouse experiments indicated that the wound healing rate showed 93 % wound closure in 7 days compared to 67 % with controls. The multifunctional antibacterial hydrogel has immense potential as a dressing in the treatment of infected wounds.

Keywords: Antibacterial hydrogel; Wound healing; pH-responsive.