NLR inflammasomes recognize pathogen-associated molecular patterns (PAMPs), triggering Caspase-1 activation and leading to gasdermin D (GSDMD)-mediated pyroptosis, a crucial immune response in mammals. The functional GSDME-mediated pyroptosis has been reported in invertebrates, yet the existence of an NLR-Caspase-GSDME axis mediating pyroptosis signaling cascades remains unclear. In this study, we reported an NLRC4 homolog named ChNLRC4, a pattern recognition receptor from the oyster Crassostrea hongkongensis that is able to bind to LPS and Lys-type PGN through its LRR domain. ChNLRC4 interacted with ChCaspase-1 through CARD-CARD domain homotypic interactions and enhanced ChCaspase-1 activity. Additionally, overexpression of ChNLRC4 promoted ChCaspase-1-mediated cleavage of ChGSDME, leading to pyroptosis in HEK293T cells. Furthermore, knockdown of chnlrc4 resulted in a significant reduction in the death rate of hemocytes, immune infiltration of hemocytes, cilium shedding, and bacterial clearance. Collectively, this study provides insight into the role of NLR within the pyroptosis signaling pathway in oysters.
Keywords: ChCaspase-1; ChGSDME; ChNLRC4; Crassostrea hongkongensis; Pyroptosis.
Copyright © 2025. Published by Elsevier B.V.