The major roles of intestinal microbiota and TRAF6/NF-κB signaling pathway in acute intestinal inflammation in mice, and the improvement effect by Hippophae rhamnoides polysaccharide

Int J Biol Macromol. 2025 Jan 8:139710. doi: 10.1016/j.ijbiomac.2025.139710. Online ahead of print.

Abstract

Acute enteritis, an intestinal disease with intestinal inflammation and injury as the main pathological manifestations. Inhibiting the inflammatory response is critical to the treatment of acute enteritis. Previous studies have shown that the Hippophae rhamnoides polysaccharide (HRP) has strong immune-enhancing effects. However, their functions regarding the intestines and the underlying mechanism are still unclear. In this study, the role of HRP in lipopolysaccharide (LPS)-induced acute enteritis in mice and its related mechanisms are discussed from two aspects: intestinal inflammation and intestinal microbiota. Kunming mice were inoculated with LPS to establish animal models of acute enteritis. The results showed that HRP attenuated the histological damage and maintained the intestine mucosal barrier via up-regulating the expression of occludin, claudin-1, and zona occludens-1 (ZO-1), and suppressing the levels of pro-inflammatory cytokines (tumor necrosis factor-alpha (TNF-α), interleukin-6 (IL-6), and interleukin-1β (IL-1β)). The relative mRNA and protein levels of nuclear factor-kappa B p65 (NF-κBp65) and tumor necrosis factor-receptor-associated factor 6 (TRAF6) in the intestine tissues of LPS-induced acute enteritis mice significantly increased, whereas these adverse changes were alleviated in the HRP intervention groups. Notably, HRP may regulate the expression of the TRAF6/NF-κB signaling pathway by affecting the diversity of the intestinal microbiota. Microbiota analysis showed that HRP promoted the proliferation of beneficial bacteria, including Clostridia_UCG-014, Candidatus_Saccharimonas, Lachnospiraceae_NK4A136_group, Bacteroidota, Deferribacterota, and reduced the abundance of Atopostipes, Corynebacterium, Actinobacteriota, and Desulfobacterota. The studies conformed that the gut microbiota is crucial in HRP-mediated immunity regulation. HRP shows great potential as an immune enhancer and a natural medicine for treating intestinal inflammatory diseases.

Keywords: Hippophae rhamnoides polysaccharide; Inflammation; Intestinal microbiota; Lipopolysaccharide; TRAF6/NF-κB signaling pathway.