Advanced energetic composites possess promising properties and wide-ranging applications in explosives and propellants. Nonetheless, most metal-based energetic composites present significant challenges due to surface oxidation and low-pressure output. This study introduces a facile in situ method to develop energetic composites Cutztr@AP through the intermolecular assembly of nitrogen-rich energetic coordination polymers and high-energy oxidant ammonium perchlorate (AP). Morphological analysis reveals the unique structure of Cutztr@AP, where Cutztr is distributed throughout the interior and surface of the AP particles. The nonisothermal thermodynamic analysis reveals a heat release of 2378.2 J g-1 for Cutztr@AP2, outperforming the Cutztr/AP2 achieved through ultrasonic mixing (2000 J g-1). Notably, Cutztr@AP2 exhibits promising combustion and pressure output performances, including a significantly shorter duration, a larger flame area, and higher pressure values. This novel and facile preparation technique and microstructure design approach holds significant promise for high-performance propellants, gas generators, and other related applications.
Keywords: combustion performance; energetic composites; energetic coordination polymers; high reactivity; pressure output.