Unraveling climate change-induced compound low-solar-low-wind extremes in China

Natl Sci Rev. 2024 Nov 25;12(1):nwae424. doi: 10.1093/nsr/nwae424. eCollection 2025 Jan.

Abstract

China's pursuit of carbon neutrality targets hinges on a profound shift towards low-carbon energy, primarily reliant on intermittent and variable, yet crucial, solar and wind power sources. In particular, low-solar-low-wind (LSLW) compound extremes present a critical yet largely ignored threat to the reliability of renewable electricity generation. While existing studies have largely evaluated the impacts of average climate-induced changes in renewable energy resources, comprehensive analyses of the compound extremes and, particularly, the underpinning dynamic mechanisms remain scarce. Here we show the dynamic evolution of compound LSLW extremes and their underlying mechanisms across China via coupling multi-model simulations with diagnostic analysis. Our results unveil a strong topographic dependence in the frequency of compound LSLW extremes, with a national average frequency of 16.4 (10th-90th percentile interval ranges from 5.3 to 32.6) days/yr, when renewable energy resources in eastern China are particularly compromised (∼80% lower than that under an average climate). We reveal a striking increase in the frequency of LSLW extremes, ranging from 12.4% under SSP126 to 60.2% under SSP370, primarily driven by both renewable energy resource declines and increasingly heavily-tailed distributions, resulting from weakened meridional temperature (pressure) gradient, increased frequency of extremely dense cloud cover and additional distinctive influence of increased aerosols under SSP370. Our study underscores the urgency of preparing for significantly heightened occurrences of LSLW events in a warmer future, emphasizing that such climate-induced compound LSLW extreme changes are not simply by chance, but rather projectable, thereby underscoring the need for proactive adaptation strategies. Such insights are crucial for countries navigating a similar transition towards renewable energy.

Keywords: climate change; compound energy droughts; renewable energy; solar energy; wind energy.