Study on Highly Sensitive Capacitive Pressure Sensor Based on Silk Fibroin-Lignin Nanoparticles Hydrogel

Biomacromolecules. 2025 Jan 9. doi: 10.1021/acs.biomac.4c01334. Online ahead of print.

Abstract

Silk fibroin (SF) hydrogel has been proven to have excellent applications in the field of pressure sensors, but its sensing performance still needs improvement. A flexible hydrogel prepared from natural macromolecular materials was developed, and lignin nanoparticles (LNPs) were introduced during the preparation of the SF hydrogel. When LNPs account for 3% of SF, the sensing unit of the SF-LNPs3% hydrogel exhibits high stress sensitivity (1.32 kPa-1), fast response speed (<0.1 s), and superior cycle stability (≥8000 cycles). The sensor can detect human motion information, such as finger bending, elbow bending, and pulse signals. When worn at the vocal cord position, it can detect the peak value of the characteristic signal during the wearer speaks. This work demonstrates that the SF-LNPs3% hydrogel has high sensitivity and shows great potential in the field of pressure sensors.