The sensitivity of solid state nuclear magnetic resonance spectroscopy can be enhanced via dynamic nuclear polarization (DNP) using unpaired electrons as polarizing agents. In metal ions based (MI)-DNP, paramagnetic metal ions are introduced as dopants into inorganic materials serving as endogenous polarizing agents. Having polarizing agents as part of the structure enables signal enhancements within the bulk of the material. Nuclear spins can be hyperpolarized either directly through their coupling to the polarizing agent or via homonuclear spin diffusion. In this work, we addressed what are the factors determining the relative sizes of the spin pools polarized by each of these two mechanisms and how changing their contribution to the polarization process affects the experimental outcome. Experimentally, we adjusted the spin diffusion rate through modifying the isotope ratio 6Li/7Li in otherwise identical samples, Li4Ti5O12 doped with paramagnetic Fe(III). DNP experiments on samples with typical content of polarizing agents for MI-DNP, corroborated by simulations, evidenced that while the efficiency of spin diffusion has large effects on the polarization buildup times, the enhancements remain largely unaffected.
© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International (CC BY-NC-ND) license (https://creativecommons.org/licenses/by-nc-nd/4.0/).