Phase boundaries promote chemical reactions through localized fluxes

J Chem Phys. 2025 Jan 14;162(2):024112. doi: 10.1063/5.0242782.

Abstract

One of the hypothesized functions of biomolecular condensates is to act as chemical reactors, where chemical reactions can be modulated, i.e., accelerated or slowed down, while substrate molecules enter and products exit from the condensate. Similarly, the components themselves that take part in the architectural integrity of condensates might be modified by active (energy consuming, non-equilibrium) processes, e.g., by ATPase chaperones or by kinases and phosphatases. In this work, we study how the presence of spatial inhomogeneities, such as in the case of liquid-liquid phase separation, affects active chemical reactions and results in the presence of directional flows of matter, which are one of the hallmarks of non-equilibrium processes. We establish the minimal conditions for the existence of such spatial currents, and we furthermore find that these fluxes are maximal at the condensate interface. These results propose that some condensates might be most efficient as chemical factories due to their interfaces rather than their volumes and could suggest a possible biological reason for the observed abundance of small non-fusing condensates inside the cell, thus maximizing their surface and the associated fluxes.