The highly anisotropic and nonadditive nature of nanoparticle surfaces restricts their characterization by limited types of techniques that can reach atomic or molecular resolution. While small-angle neutron scattering (SANS) is a unique tool for analyzing complex systems, it has been traditionally considered a low-resolution method due to its limited scattering vector range and wide wavelength spread. In this article, we present a novel perspective on SANS by showcasing its exceptional capability to provide molecular-level insights into nanoparticle interfaces. We report a series of experiments on multicomponent nanoparticles, where we demonstrate the ability of SANS to differentiate between competing structural models with molecular- and Å-scale differences. The results provide accurate quantification of organic ligand chain lengths, nanoparticles' heterogeneity, and detailed structures of surrounding counter-ion layers in solution. Furthermore, we show that SANS can probe subtle variations in self-assembled monolayer structures in different thermodynamic states. Our findings challenge the conventional view of SANS as a low-resolution technique for nanoparticle characterization and demonstrate its unique potential for providing molecular-level insights into complex nanoparticle surface structures.