Purpose: Appropriate opioid management is crucial to reduce opioid overdose risk for ICU surgical patients, which can lead to severe complications. Accurately predicting postoperative opioid needs and understanding the associated factors can effectively guide appropriate opioid use, significantly enhancing patient safety and recovery outcomes. Although machine learning models can accurately predict postoperative opioid needs, lacking interpretability hinders their adoption in clinical practice.
Methods: We developed an interpretable deep learning framework to evaluate individual feature's impact on postoperative opioid use and identify important factors. A Permutation Feature Importance Test (PermFIT) was employed to assess the impact with a rigorous statistical inference for machine learning models including Support Vector Machines, eXtreme Gradient Boosting, Random Forest, and Deep Neural Networks (DNN). The Mean Squared Error (MSE) and Pearson Correlation Coefficient (PCC) were used to evaluate the performance of these models.
Results: We conducted analysis utilizing the electronic health records of 4,912 surgical patients from the Medical Information Mart for Intensive Care database. In a 10-fold cross-validation, the DNN outperformed other machine learning models, achieving the lowest MSE (7889.2 mcg) and highest PCC (0.283). Among 25 features, 13-including age, surgery type, and others-were identified as significant predictors of postoperative opioid use (p < 0.05).
Conclusion: The DNN proved to be an effective model for predicting postoperative opioid consumption and identifying significant features through the PermFIT framework. This approach offers a valuable tool for precise opioid prescription tailored to the individual needs of ICU surgical patients, improving patient outcomes and enhancing safety.
Keywords: Complex Associations; Deep Neural Network; Feature Importance Test; Predictive Modeling.