Breaking the deep-red light absorption barrier of iridium(III)-based photosensitizers

Dalton Trans. 2025 Jan 21;54(4):1320-1328. doi: 10.1039/d4dt03014a.

Abstract

Activating photosensitizers with long-wavelength excitation is an important parameter for effective photodynamic therapy due to the minimal toxicity of this light, its superior tissue penetration, and excellent spatial resolution. Unfortunately, most Ir(III) complexes suffer from limited absorption within the phototherapeutic window, rendering them ineffective against deep-seated and/or large tumors, which poses a significant barrier to their clinical application. To address this issue, several efforts have been recently made to shift the absorption of Ir(III) photosensitizers to the deep-red/near-infrared region by using different strategies: functionalization with organic fluorophores, including porphyrinoid compounds, and ligand design via π-extension and donor-acceptor interactions. In this Frontier, we highlight such new developments and the ongoing challenges in this field.

Publication types

  • Review