Intermittent Fasting Enhances Motor Coordination Through Myelin Preservation in Aged Mice

Aging Cell. 2025 Jan 8:e14476. doi: 10.1111/acel.14476. Online ahead of print.

Abstract

Integrating dietary interventions have been extensively studied for their health benefits, such as Alzheimer's disease, Huntington's disease, and aging. However, it is necessary to fully understand the mechanisms of long-term effects and practical applications of these dietary interventions for health. A 10-week intermittent fasting (IMF) regimen was implemented on the aging animals in the current study. The variations of cerebral functions were analyzed employing a comprehensive experimental design that includes behavioral tests, neuroimaging, and ultrastructural analysis, such as resting-state functional MRI (rsfMRI), EEG/EMG recordings, transmission electron microscopy, and immunohistochemistry. Over a 10-week regimen, IMF significantly improved locomotor activity, motor coordination, and muscle strength compared to controls (p < 0.01). Resting-state fMRI (rsfMRI) demonstrated that IMF modulates brain-wide functional connectivity, enhancing communication between key brain regions. Advanced imaging techniques revealed increased expression of myelin-related proteins, including myelin basic protein (MBP), and myelin-associated glycoprotein (MAG), indicating enhanced myelin integrity and repair, particularly in axons with diameters < 400 nm (p < 0.01). These findings suggest that IMF may mitigate age-related declines by promoting better neuronal signaling. This study highlights the potential function of IMF as a non-pharmacological intervention to promote brain health and mitigate cognitive decline in aging populations.

Keywords: aging animals; intermittent fasting; myelin basic protein; myelin‐associated glycoprotein; resting state functional MRI.