Gas Sensor for Efficient Acetone Detection and Application Based on Au-Modified ZnO Porous Nanofoam

Sensors (Basel). 2024 Dec 19;24(24):8100. doi: 10.3390/s24248100.

Abstract

Toxic acetone gas emissions and leakage are a potential threat to the environment and human health. Gas sensors founded on metal oxide semiconductors (MOS) have become an effective strategy for toxic gas detection with their mature process. In the present work, an efficient acetone gas sensor based on Au-modified ZnO porous nanofoam (Au/ZnO) is synthesized by polyvinylpyrrolidone-blowing followed by a calcination method. XRD and XPS spectra were utilized to investigate its structure, while SEM and TEM characterized its morphology. The gas sensitivity of the Au/ZnO sensors was investigated in a static test system. The results reveal that the gas-sensitive performance of porous ZnO toward the acetone can be enhanced by adjusting the loading ratio of noble Au nanoparticles. Specifically, the Au/ZnO sensor prepared by the Au loading ratio of 3.0% (Au/ZnO-3.0%) achieved a 100 ppm acetone gas response of 20.02 at the optimum working temperature of 275 °C. Additionally, a portable electronic device used a STM32 primary control chip to integrate the Au/ZnO-3.0% gas sensor with other modules to achieve the function of detecting and alarming toxic acetone gas. This work is of great significance for efficiently detecting and reducing acetone emissions.

Keywords: Au/ZnO; acetone gas sensor; metal oxide-semiconductor; porous nanostructure; portable device.