In this article, we consider an UAV (unmanned aerial vehicle)-assisted free space optical (FSO) secure communication network. Since FSO signal is impossible to detect by eavesdroppers without proper beam alignment and security authentication, a BS employs FSO technique to transfer information to multiple authenticated sensors, to improve the transmission security and reliability with the help of an UAV relay with decode and forward (DF) mode. All the sensors need to first send information to the UAV to obtain security authentication, and then the UAV forwards corresponding information to them. Successive interference cancellation (SIC) is used to decode the information received at the UAV and all authenticated sensors. With consideration of fairness, we introduce a statistical metric for evaluating the network performance, i.e., the maximum decoding outage probability for all authenticated sensors. In particular, applying an intelligent approach, we obtain a near-optimal scheme for secure transmit power allocation. With a well-trained allocation scheme, approximate closed-form expressions for optimal transmit power levels can be obtained. Through some numerical examples, we illustrate the various design trade-offs for such a system. Additionally, the validity of our approach was verified by comparing with the result from exhaustive search. In particular, the result with DRL was only 0.3% higher than that with exhaustive search. These results can provide some important guidelines for the fairness-aware design of UAV-assisted secure FSO communication networks.
Keywords: UAV relay; decoding outage probability; secure FSO communication; security authentication; successive interference cancellation (SIC).