Ovarian cancer (OC) must be detected in its early stages when the mortality rate is the lowest to provide patients with the best chance of survival. Lysophosphatidic acid (LPA) is a critical OC biomarker since its levels are elevated across all stages and increase with disease progression. This paper presents an LPA assay based on a thickness shear mode acoustic sensor with dissipation monitoring that involves a new thiol molecule 3-(2-mercaptoethanoxy)propanoic acid (HS-MEG-COOH). HS-MEG-COOH is an antifouling linker that provides (a) antifouling properties for gold substrates and (b) linking ability via its terminal carboxylic acid functional group. The antifouling ability of HS-MEG-COOH was tested in whole human serum. The new molecule was applied to the LPA assay in conjunction with a spacer molecule, 2-(2-mercaptoethoxy)ethan-1-ol (HS-MEG-OH), in a 1:1 v/v ratio. HS-MEG-COOH was covalently linked to gelsolin-actin, a protein complex probe that dissociates due to LPA-binding. LPA was detected in phosphate-buffered saline and undiluted human serum and achieved a low limit of detection (1.0 and 0.7 μM, respectively) which was below the concentration of LPA in healthy individuals. The antifouling properties of HS-MEG-COOH and the detection of LPA demonstrate the ability of the sensor to successfully identify the early-stage OC biomarker in undiluted human serum.
Keywords: actin; antifouling linker; biosensor; gelsolin; lysophosphatidic acid; ovarian cancer; thickness shear mode.