Heavy metal contamination is a critical factor contributing to soil degradation and poses significant environmental threats with profound implications for ecosystems and human health. Soil amendments have become an effective strategy to address these challenges by reducing heavy metal hazards and remediating contaminated soils. This review offers a comprehensive analysis of recent advancements in soil amendments for heavy metal-contaminated soils, with a focus on natural, synthetic, natural-synthetic copolymer, and biological amendments. By thoroughly examining and contrasting their remediation mechanisms and effects, this study provides a detailed evaluation of their influence on soil physicochemical properties, leachable heavy metal content, and microbial communities. Through bibliometric analysis, current research priorities and trends are highlighted, offering a multidimensional comparison of these amendments and clarifying their varying applicability and limitations. Furthermore, this review explores future prospects and the inherent challenges in soil amendments for heavy metal contamination, aiming to offer valuable insights and theoretical references for the development and selection of novel, efficient, multifunctional, environmentally friendly amendments.
Keywords: bibliometric analysis; contaminated soils; heavy metal; soil amendments; soil degradation.