The microbiota stability, diversity, and composition are pillars for an efficient and beneficial symbiotic relationship between its host and itself. Microbial dysbiosis, a condition where a homeostatic bacterial community is disturbed by acute or chronic events, is a predisposition for many diseases, including local and systemic inflammation that leads to metabolic syndrome, diabetes, and some types of cancers. Classical dysbiosis occurs in the large intestine. During this period, pathogenic strains can multiply, taking advantage of the compromised environment. This overgrowth triggers an exaggerated inflammatory response from the human immune system due to the weakened integrity of the intestinal barrier. Such inflammation can also directly influence higher polyp formation and/or tumorigenesis. Prebiotics can be instrumental in preventing or correcting dysbiosis. Prebiotics are molecules capable of serving as substrates for fermentation processes by gut microorganisms. This can promote returning the intestinal environment to homeostasis. Effective prebiotics are generally specific oligo- and polysaccharides, such as FOS or inulin. However, the direct effects of prebiotics on intestinal epithelial and immune cells must also be taken into consideration. This interaction happens with diverse prebiotic nondigestible carbohydrates, and they can inhibit or decrease the inflammatory response. The present work aims to elucidate and describe the different types of prebiotics, their influence, and their functionalities for health, primarily focusing on their ability to reduce and control inflammation in the intestinal epithelial barrier, gut, and systemic environments.
Keywords: dysbiosis; inflammation; microbiota; polysaccharides; prebiotics.