LncRNA-MSTRG.19083.1 Targets NTRK2 as a miR-429-y Sponge to Regulate Circadian Rhythm via the cAMP Pathway in Yak Testis and Cryptorchidism

Int J Mol Sci. 2024 Dec 18;25(24):13553. doi: 10.3390/ijms252413553.

Abstract

Long noncoding RNAs (LncRNAs) play essential roles in numerous biological processes in mammals, such as reproductive physiology and endocrinology. Cryptorchidism is a common male reproductive disease. Circadian rhythms are actively expressed in the reproductive system. In this study, a total of 191 LncRNAs were obtained from yak testes and cryptorchids. Then, we identified NTRK2's relationship to circadian rhythm and behavioral processes. Meanwhile, the ceRNA (LncRNA-MSTRG.19083.1/miR-429-y/NTRK2) network was constructed, and its influence on circadian rhythm was revealed. The results showed that NTRK2 and LncRNA-MSTRG.19083.1 were significantly upregulated, and miR-429-y was obviously decreased in cryptorchid tissue; NTRK2 protein was mainly distributed in the Leydig cells of the testis. In addition, the upregulation of the expression level of miR-429-y resulted in the significant downregulation of LncRNA and NTRK2 levels, while the mRNA and protein levels of CREB, CLOCK, and BMAL1 were significantly upregulated; the knockdown of miR-429-y resulted in the opposite changes. Our findings suggested that LncRNA-MSTRG.19083.1 competitively binds to miR-429-y to target NTRK2 to regulate circadian rhythm through the cAMP pathway. Taken together, the results of our study provide a comprehensive understanding of how the LncRNA-miRNA-mRNA networks operate when yak cryptorchidism occurs. Knowledge of circadian-rhythm-associated mRNAs and LncRNAs could be useful for better understanding the relationship between circadian rhythm and reproduction.

Keywords: LncRNA; NTRK2; circadian rhythm; cryptorchidism; yak.

MeSH terms

  • Animals
  • Cattle
  • Circadian Rhythm* / genetics
  • Cryptorchidism* / genetics
  • Cryptorchidism* / metabolism
  • Cyclic AMP / metabolism
  • Gene Expression Regulation
  • Leydig Cells / metabolism
  • Male
  • MicroRNAs* / genetics
  • MicroRNAs* / metabolism
  • RNA, Long Noncoding* / genetics
  • RNA, Long Noncoding* / metabolism
  • Receptor, trkB / genetics
  • Receptor, trkB / metabolism
  • Signal Transduction
  • Testis* / metabolism

Substances

  • RNA, Long Noncoding
  • MicroRNAs
  • Cyclic AMP
  • Receptor, trkB