This study aimed to evaluate the efficacy of a novel three-dimensional (3D) spinal decompression and correction device in improving the in-brace correction and patient comfort level for adolescents with idiopathic scoliosis (AIS), and to assess the impact of the number of vertebrae involved in the scoliotic curve on the correction's effectiveness. A single-centre, single-blinded randomized controlled trial (RCT) was conducted in 110 AIS patients aged 10-18 years who were randomly allocated into four groups receiving 0-3 days of device intervention. Each session lasted for 30 min and was conducted twice daily. Significant improvements were observed in both the in-brace correction ratio and patient comfort level, particularly in the 2- and 3-day intervention groups (p < 0.001). The number of involved vertebrae for a scoliotic curve was positively correlated with the in-brace correction ratio in the no intervention (or 0-day) and 1-day intervention groups, while this correlation varied in the 2- and 3-day intervention groups. These findings suggested that the prolonged use of the 3D device could improve the correction ratios and patient comfort, while the role of vertebrae involvement in predicting the initial correction may require further exploration to optimize personalized treatment strategies in future clinical practice.
Keywords: 3D spinal decompression and correction; adolescent idiopathic scoliosis (AIS); in-brace correction; patient comfort; prognosis; randomized controlled trial; vertebral number.