The long-term presence of antibiotics in the aquatic environment will affect ecology and human health. Techniques for determining antibiotics are often time-consuming, labor-intensive and costly, and it is desirable to seek new methods to achieve rapid prediction of antibiotics. Many scholars have shown the effectiveness of machine learning in water quality prediction, however, its effectiveness in predicting antibiotic concentrations in the aquatic environment remains inconclusive. Given that conventional water quality indicators directly or indirectly influence antibiotic concentrations, we explored the feasibility of predicting ciprofloxacin (CFX) concentrations based on conventional water quality indicators with the help of three commonly used machine learning algorithms and two parameter optimization algorithms. Then, we evaluated and determined the best model using four commonly used model performance evaluation metrics. The evaluation results showed that the generalized regression neural network (GRNN) model optimized by particle swarm optimization (PSO) had the best prediction among all the models under the conditions of six input variables, namely COD, NH4+-N, DO, WT, TN, and pH. The performance evaluations were R2= 0.936, NSE= 0.915, RMSE= 3.150 ng/L, and MAPE= 30.909 %. Overall, the CFX prediction models met the requirements for antibiotic concentration prediction accuracy, offering a potential indirect method for predicting antibiotic concentrations in water quality management.
Keywords: Ciprofloxacin; Machine learning model; Optimization algorithms; Sensitivity analysis; Water quality prediction.
Copyright © 2025 The Authors. Published by Elsevier Inc. All rights reserved.