Structural Analysis of Plasma-Induced Oxidation and Electric Field Effect on the Heat Shock Protein (Hsp60) Structure: A Computational Viewpoint

Chem Biodivers. 2025 Jan 5:e202401243. doi: 10.1002/cbdv.202401243. Online ahead of print.

Abstract

In recent years, there has been an increase in the study of the mechanisms behind plasma oncology. For this, many wet lab experiments and computational studies were conducted. Computational studies give an advantage in examining protein structures that are costly to extract in enough amounts to analyze the biophysical properties following plasma treatment. Therefore, in this work, we studied the effect of plasma oxidation and electric field on the human mitochondrial heat shock protein (mHsp60). Hsp60, alias chaperonin, is one of the most conserved proteins expressed across all species. Hence, we performed molecular dynamic simulations to calculate the root-mean-square deviation, root-mean-square fluctuation, and solvent-accessible surface area of mHsp60 with and without oxidation. In addition to the oxidation state, we also applied an electric field (0.003 and 2.0 V/nm) to check the changes in the mHsp60 protein. Through simulations, we observed that the electric field strongly affects the structure of mHsp60 protein compared with the oxidation. The combination of oxidation and electric field effect increases the destabilization of the mHsp60 structure compared with their respective control states.

Keywords: electric field; heat shock protein; molecular dynamic simulations; plasma oxidation.