Lactiplantibacillus plantarum P101 Alleviates Liver Toxicity of Combined Microplastics and Di-(2-Ethylhexyl) Phthalate via Regulating Gut Microbiota

Probiotics Antimicrob Proteins. 2025 Jan 3. doi: 10.1007/s12602-024-10439-5. Online ahead of print.

Abstract

Microplastics (MPs) and Di-(2-ethylhexyl) phthalate (DEHP) as emerging contaminants, have caused increasing concern due to their co-exposure risks and toxicities to humans. Lactic acid bacteria have been demonstrated to play a significant role in the mitigation of organismal damage. Probiotic intervention is widely recognized as a safe and healthy therapeutic strategy for targeting the mitigation of organic damage. This study explored the effectiveness and underlining mechanism of an excellent probiotic property Lactiplantibacillus plantarum P101 (L. plantarum P101) to the combined hepatotoxicity of MPs and DEHP. In this study, mice were exposed to DEHP and MPs via free drinking water, followed by intervention with L. plantarum P101. Results showed that co-exposure to DEHP and MPs caused severe oxidative stress and inflammation in the liver and intestines, which was reversed after probiotic intervention. Moreover, the intervention reshaped the structure of gut microbiota and alleviated the liver damage after the combined exposure. Together, we found the intervention of L. plantarum P101 effectively mitigated the toxic effects on the liver system caused by the co-exposure to MPs and DEHP, offering a promising strategy for reducing the combined toxicity of these substances.

Keywords: Lactiplantibacillus plantarum P101; Di-(2-ethylhexyl) phthalate; Gut microbiota; Liver injury; Microplastics.