Sound-based uroflowmetry (SU) offers a non-invasive alternative to traditional uroflowmetry (UF) for evaluating lower urinary tract dysfunctions, enabling home-based testing and reducing the need for clinic visits. This study compares SU and UF in estimating urine flow rate and voided volume in 50 male volunteers (aged 18-60), with UF results from a Minze uroflowmeter as the reference standard. Audio signals recorded during voiding were segmented and machine learning algorithms (gradient boosting, random forest, and support vector machine) estimated flow parameters from three devices: Ultramic384k, Mi A1 smartphone, and Oppo smartwatch. The mean absolute error for flow rate estimation were 2.6, 2.5 and 2.9 ml/s, with R2 values of 84%, 83%, and 79%, respectively. Analysis of the Ultramic384k's frequency range showed that the 0-8 kHz band contained 83% of significant components, suggesting higher sampling frequencies are unnecessary. A 1000 ms segment size was optimal for balancing computational efficiency and accuracy. Lin's concordance coefficients for urine flow and voided volume using the smartwatch (0-8 kHz, 1000 ms) were 0.9 and 0.85, respectively, demonstrating that SU is a reliable, cost-effective alternative to UF for estimating key uroflowmetry parameters, with added patient convenience.
Keywords: Acoustic voiding signals; Flow prediction; Machine learning; Sound-based uroflowmetry.
© 2025. The Author(s).