We extend existing techniques by using generative adversarial network (GAN) models to reduce the appearance of cast shadows in radiographs across various age groups. We retrospectively collected 11,500 adult and paediatric wrist radiographs, evenly divided between those with and without casts. The test subset consisted of 750 radiographs with cast and 750 without cast. We extended the results from a previous study that employed CycleGAN by enhancing the model using a perceptual loss function and a self-attention layer. The CycleGAN model which incorporates a self-attention layer and perceptual loss function delivered a similar quantitative performance as the original model. This model was applied to images from 20 cases where the original reports recommended CT scanning or repeat radiographs without the cast, which were then evaluated by radiologists for qualitative assessment. The results demonstrated that the generated images could improve radiologists' diagnostic confidence, in some cases leading to more decisive reports. Where available, the reports from follow-up imaging were compared with those produced by radiologists reading AI-generated images. Every report, except two, provided identical diagnoses as those associated with follow-up imaging. The ability of radiologists to perform robust reporting with downsampled AI-enhanced images is clinically meaningful and warrants further investigation. Additionally, radiologists were unable to distinguish AI-enhanced from unenhanced images. These findings suggest the cast suppression technique could be integrated as a tool to augment clinical workflows, with the potential benefits of reducing patient doses, improving operational efficiencies, reducing delays in diagnoses, and reducing the number of patient visits.
Keywords: Artifact suppression; Cast shadow; Deep learning; Generative adversarial network (GAN); Wrist radiographs.
© 2024. The Author(s) under exclusive licence to Society for Imaging Informatics in Medicine.