Global warming has profound effects on precipitation patterns, leading to more frequent and extreme precipitation events over the world. These changes pose significant challenges to the sustainable development of socio-economic and ecological environments. This study evaluated the performance of the new generation of the mesoscale Weather Research and Forecasting (WRF) model in simulating long-term extreme precipitation events over the Minjiang River Basin (MRB) of China from 1981 to 2020. We calculated 12 extreme precipitation indices from the WRF simulations and compared them with observations. The spatio-temporal variations of extreme precipitation were further analyzed in terms of intensity, frequency, and duration. The results indicated that the WRF model can appropriately reproduce the spatial distribution of extreme precipitation indices with acceptable biases. The performance is significantly better for intensity and frequency indices compared to duration indices. Except for PRCPTOT and R10mm, WRF accurately captures the interannual variations of extreme precipitation. Meanwhile, the results of the pre-whitening Mann-Kendall (PWMK) test suggested that WRF can identify significant increasing trends in extreme precipitation, particularly for R95p, R99p, and R50mm. This study provides valuable insights for extreme precipitation forecasting and warning in other mountainous regions.
Keywords: Dynamical downscaling; Extreme precipitation; Minjiang River Basin; Spatio-temporal variations; WRF.
© 2024. The Author(s).