As a significant global concern, air pollution triggers enormous challenges in public health and ecological sustainability, necessitating the development of precise algorithms to forecast and mitigate its impacts, which has led to the development of many machine learning (ML)-based models for predicting air quality. Meanwhile, overfitting is a prevalent issue with ML algorithms that decreases their efficacy and generalizability. The present investigation, using an extensive collection of data from 16 sensors in Tehran, Iran, from 2013 to 2023, focuses on applying the Least Absolute Shrinkage and Selection Operator (Lasso) regularisation technique to enhance the forecasting precision of ambient air pollutants concentration models, including particulate matter (PM2.5 and PM10), CO, NO2, SO2, and O3 while decreasing overfitting. The outputs were compared using the R-squared (R2), mean absolute error (MAE), mean square error (MSE), root mean square error (RMSE), and normalised mean square error (NMSE) indices. Despite the preliminary findings revealing that Lasso dramatically enhances model reliability by decreasing overfitting and determining key attributes, the model's performance in predicting gaseous pollutants against PM remained unsatisfactory (R2PM2.5 = 0.80, R2PM10 = 0.75, R2CO = 0.45, R2NO2 = 0.55, R2SO2 = 0.65, and R2O3 = 0.35). The minimal degree of missing data presumably explained the strong performance of the PM model, while the high dynamism of gases and their chemical interactions, in conjunction with the inherent characteristics of the model, were the primary factors contributing to the poor performance of the model. Simultaneously, the successful implementation of the Lasso regularisation approach in mitigating overfitting and selecting more important features makes it highly suggested for application in air quality forecasting models.
Keywords: Air pollution; Air quality prediction; Lasso regularisation; Machine learning; Overfitting.
© 2024. The Author(s).