Currently, the primary composition of fibrous filter materials predominantly relies on synthetic polymers derived from petroleum. The utilization of these polymers, as well as their production process, has a negative impact on the environment. Consequently, the adoption of air filter media fabricated from natural fibers would yield significant environmental benefits. Nowadays not only particle and odour capture performance but also ensuring a high energy efficiency and flame retardant properties in air filters is of utmost importance for automotive and HVAC filters. In this study, for the production of biodegradable and flame retardant air filters with a high quality factor, free standing gelatin/sodium alginate blend fibers were successfully produced via centrifugal spinning. The water-soluble mats were stabilized by physical methods using both thermal and ionic crosslinking. The CGCA (Crosslinked-Gelatin/Calcium Alginate) mat exhibited exceptional filtration performance for PM0.3 particles, achieving a 94.2 % efficiency rating at a pressure drop of 135 Pa. Moreover, blending of biopolymers and subsequent calcination provided V0 level flame retardancy according to UL94 standard. The preliminary biodegradation studies showed that proposed nanofibrous filters were completely degraded in soil in 7 days.
Keywords: Air filter; Biopolymers; Centrifugal spinning; Flame retardant; Gelatin; Sodium alginate.
Copyright © 2024. Published by Elsevier B.V.