Purpose: Buckwheat, a dicotyledonous crop of Polygonaceae family, is known for its nutritional value and adaptability to adverse climates. Local people reported that prolonged consumption of buckwheat seeds and leaves causes numbness and gastrointestinal problems. The present study was conducted to observe the impact of different doses of γ-radiations on phytoconstituents of buckwheat seeds and leaves, to make them nutritionally superior.
Materials and methods: Buckwheat seeds were treated with 5, 10, 15 and 20 kGy doses of γ-radiations and grown in an experimental farm. Various phytoconstituents in seeds and leaves were analyzed.
Results: The antioxidant, phenol, flavonoid, β-carotene, iron, calcium, lysine and arginine were increased significantly (<5%) with increasing doses of γ-radiations up to 10 kGy, whereas, anti-nutrients (tannin, phytic acid and oxalate) decreased significantly (<5%). γ-radiation @ 10 kGy is the best for the enhancement of phytoconstituents in buckwheat seeds from a nutrition point of view. Phytoconstituents in buckwheat leaves and irradiated seed progeny were positively co-related with M1 seeds.
Conclusions: It can be concluded that the buckwheat seeds treated with a 10 kGy dose of γ-radiation are the best to produce green leaves as hara saag, and progeny seeds for preparation of flour. However, superior mutant selection and effect of by-products from γ-irradiated buckwheat seeds is the thrust area of future research.
Keywords: Anti-nutrients; buckwheat; lysine; minerals; phytoconstituents; γ-irradiation.