Backscattering Mueller matrix polarimetry estimates microscale anisotropy and orientation in complex brain tissue structure

J Med Imaging (Bellingham). 2025 Jan;12(1):016001. doi: 10.1117/1.JMI.12.1.016001. Epub 2024 Dec 31.

Abstract

Purpose: Diffusion magnetic resonance imaging (dMRI) quantitatively estimates brain microstructure, diffusion tractography being one clinically utilized framework. To advance such dMRI approaches, direct quantitative comparisons between microscale anisotropy and orientation are imperative. Complete backscattering Mueller matrix polarized light imaging (PLI) enables the imaging of thin and thick tissue specimens to acquire numerous optical metrics not possible through conventional transmission PLI methods. By comparing complete PLI to dMRI within the ferret optic chiasm (OC), we may investigate the potential of this PLI technique as a dMRI validation tool and gain insight into the microstructural and orientational sensitivity of this imaging method in different tissue thicknesses.

Approach: Post-mortem ferret brain tissue samples (whole brain, n = 1 and OC, n = 3 ) were imaged with both dMRI and complete backscattering Mueller matrix PLI. The specimens were sectioned and then reimaged with PLI. Region of interest and correlation analyses were performed on scalar metrics and orientation vectors of both dMRI and PLI in the coherent optic nerve and crossing chiasm.

Results: Optical retardance and dMRI fractional anisotropy showed similar trends between metric values and were strongly correlated, indicating a bias to macroscale architecture in retardance. Thick tissue displays comparable orientation between the diattenuation angle and dMRI fiber orientation distribution glyphs that are not evident in the retardance angle.

Conclusions: We demonstrate that backscattering Mueller matrix PLI shows potential as a tool for microstructural dMRI validation in thick tissue specimens. Performing complete polarimetry can provide directional characterization and potentially microscale anisotropy information not available by conventional PLI alone.

Keywords: brain imaging; diffusion magnetic resonance imaging; multi-modal imaging; polarized light imaging; validation.