In solid-state nuclear magnetic resonance (ssNMR) spectroscopy, fast magic angle spinning (MAS) is a potent technique that efficiently reduces line broadening and makes it possible to probe structural details of biological systems in high resolution. However, its utilization in studying complex heterogeneous biomaterials such as bone in their native state has been limited. The present study has demonstrated the feasibility of acquiring two-dimensional (2D) 1H-1H correlation spectra for native bone using multiple-quantum/single-quantum correlation experiments (MQ/SQ) at fast MAS (70 kHz). This method uncovered distinct 1H-1H dipolar coupling networks involving long-chain charged residues of collagen protein, highlighting their role in maintaining the stability of the collagen triple helix. Our study opens up new avenues for 1H-detected multi-quantum-based experiments at fast MAS on native collagen-containing biological systems to explore their complex heterogeneous structural details more efficiently.
Keywords: 1H; bone; collagen; dipolar coupling; fast MAS; multi‐quantum NMR.
© 2024 John Wiley & Sons Ltd.