The self-assembled peptide RADA16-I (RADARADARADARADA) has been widely used in biomaterials. However, studies on the practical application of self-assembled peptide hydrogels loaded with bioactive peptides are still insufficient. In this study, we successfully prepared the peptide nanofiber gel RGJ by incorporating the bioactive peptides A8SGLP-1 (G) and Jagged-1 (J) into RADA16-I (R) in specific ratios. The mechanical properties, secondary structure, and microstructure of RGJ were thoroughly characterized using a rheometer, circular dichroism (CD), and transmission electron microscopy (TEM). The results showed that R and RGJ adopted stable β-folded structures at room temperature, and RGJ exhibited a nanofiber mesh structure, confirming its excellent physical properties. Cellular experiments demonstrated that RGJ significantly enhanced the proliferation and migration of HaCaT, L929, and HUVEC cells, with the most pronounced effect observed in HUVEC cells. In the 100 μg/mL RGJ-treated group, cell viability (OD value) reached 1.369, which was significantly higher than that of the control group (0.673) and the R-only group (0.848). The strongest pro-migratory effect was observed in HaCaT cells, with a scratch closure rate of 22.83 %. In vivo experiments showed that the deep second-degree burn wounds of mice in the RGJ gel-treated group healed rapidly by day 17, exhibiting 99.5 % wound closure, compared to 84.02 % in the R gel group, and 73.02 % and 70.97 % in the control and burn cream groups, respectively. Immunohistochemistry and ELISA results further confirmed that RGJ significantly reduced wound and systemic inflammatory responses while promoting the secretion of pro-angiogenic factors VEGF and CD31, revealing its potential mechanism for enhancing burn wound healing. Additionally, RGJ significantly reduced wound scar formation and increased skin collagen deposition, demonstrating a favorable biosafety profile compared to the control group, commercial burn ointment, and the R-only treatment group. In conclusion, the development of the peptide nanofiber gel RGJ holds great potential for wound management applications and lays a foundation for future related research.
Keywords: Deep second-degree burns; Hydrogel; Mechanism of action; Self-assembled peptide.
Copyright © 2024. Published by Elsevier B.V.