Phage-Encoded Virulence Factor, Gp05, Alters Membrane Phospholipids and Reduces Antimicrobial Susceptibility in Methicillin-Resistant Staphylococcus aureus

J Infect Dis. 2024 Dec 31:jiae640. doi: 10.1093/infdis/jiae640. Online ahead of print.

Abstract

Background: Methicillin-resistant Staphylococcus aureus (MRSA) is a leading pathogen causing severe endovascular infections. The prophage-encoded protein Gp05 has been identified as a critical virulence factor that contributes to MRSA persistence during vancomycin (VAN) treatment in an experimental endocarditis model. However, the underlining mechanisms driving this persistence phenotype remain poorly understood.

Methods: The current study aimed to elucidate the genetic factors contributing to Gp05-associated MRSA persistence by utilizing RNA sequencing (RNA-seq) on an isogenic MRSA strain set, including a clinical persistent bacteremia isolate (PB 300-169), its isogenic chromosomal gp05 deletion mutant, and gp05-complemented strains.

Results: RNA-seq analysis revealed significantly downregulation of the graSR-vraFG regulatory system and its downstream genes, mprF and dltABCD, in the gp05 deletion mutant compared to the wild-type and gp05-complemented strains. Notably, this downregulation led to a substantial shift in cell membrane composition, with a marked increase in negatively charged phosphatidylglycerol (PG) and a concomitant decrease in positively charged lysyl-PG (LPG). These changes in membrane lipid composition resulted in increased susceptibility of the gp05 deletion mutant to human cationic antimicrobial peptide (CAMP) LL-37, polymorphonuclear neutrophil (PMN) and VAN. Similar findings were observed in an isogenic gp05 overexpression strain set with different genetic background (MRSA USA300 JE2).

Conclusions: These findings suggest that Gp05 plays a pivotal role in MRSA persistence by modulating cell surface components and surface charge. This study provides new insights into the molecular mechanisms underlying Gp05-mediated persistence in MRSA endovascular infections and highlights potential therapeutic targets to combat persistent MRSA infections.

Keywords: MRSA; phage-encoded virulence factor; phospholipids; surface charge; two-component regulatory systems; vancomycin persistence.