Nodal loop semimetals are topological materials with drumhead surface states characterized by reduced kinetic energy. If the Fermi energy of such a system is near these nondispersive states interaction among charge carriers substantially impacts their electronic structure. The emergence of magnetism in these surface states is one of the possible consequences. Ca[Formula: see text]P[Formula: see text] an already synthesized material possesses a remarkably large nodal loop which is situated exactly at the Fermi level of the bulk system. In the present work, we investigate how surface magnetism is impacted by surface reconstruction and lattice termination in finite slabs in this material. We show that a slight deviation from the stoichiometric occupation of Ca sites results in the stabilization of magnetic patterns.
Keywords: Ab initio; Nodal loop semimetals; Surface magnetism.
© 2024. The Author(s).